[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 1, Issue 1 (1-2021) ::
J. Math. and Appl. 2021, 1(1): 25-34 Back to browse issues page
On the spectral property of local shift-splitting preconditioner for double saddle point problems
Mohammad Mahdi Izadkhah *
Department of Computer Science, Faculty of Computer & Industrial Engineering, Birjand University of Technology, Birjand, Iran
Abstract:   (671 Views)

Keywords: Double saddle point problem, precondition, local shift-splitting.
Full-Text [PDF 604 kb]   (152 Downloads)    
Type of Study: Research | Subject: Algebraic geometry
Received: 2020/12/28 | Accepted: 2021/01/1 | ePublished: 2021/01/1
References
1. M. Benzi, G.H. Golub, and J. Liesen, Numerical solution of saddle point problems, Acta Numer, 14 (2005) 1-137.
2. Z. Bai, J.-F. Yin and Y.-F. Su, A shift-splitting preconditioner for non-Hermitian positive definite matrices, J. Comput. Math., 24 (2006) 539-552.
3. Y. Cao, J. Du and Q. Niu, Shift-splitting preconditioners for saddle point problems, J. Comput. Appl. Math., 272 (2014) 239-250.
4. Y. Saad, Iterative Methods for Sparse Linear Systems, Second Edition, Society for Industrial and Applied Mathematics, Philadelphia, 2003.
5. D. Boffi, F. Brezzi and M. Fortin, Mixed Element Methods and Applications, Springer Ser. Comput. Math. Springer-Verlag, New York, 2013.
6. B. Morini, V. Simoncini, and M. Tani, Spectral estimates for unreduced symmetric KKT systems arising from Interior Point methods, Numer. Linear Algebra Appl., 23 (2016) 776-800.
7. H. C. Elman, D. J. Silvester, and A. J. Wathen, Performance and analysis of saddle point preconditioners for the discrete steady-state Navier–Stokes equations, Numer. Math., 90 (2002) 665–688.
8. P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press, New York, 1981.
9. J. T. Betts, Practical Methods for Optimal Control Using Nonlinear Programming, SIAM, Philadelphia, 2001.
10. AA. Bj"{o}rck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.
11. G. Strang, Introduction to Applied Mathematics, Wellesley-Cambridge Press, Wellesley, MA, 1986.
12. E. Haber, U. M. Ascher, and D. Oldenburg, On optimization techniques for solving nonlinear inverse problems, Inverse Problems, 16 (2000) 1263–1280.
13. J. Liesen, E. de Sturler, A. Sheffer, Y. Aydin, and C. Siefert, Preconditioners for indefinite linear systems arising in surface parameterization, in Proceedings of the 10th International Meshing Round Table, Sandia National Laboratories, (2001) 71–81.
14. M. Benzi and G.H.Golub, A preconditioner for generalized saddle point problems, SIAM J. Matrix Anal. Appl., 26 (2004) 20-41.
15. Q. Zheng and L. Lu, Extended shift-splitting preconditioners for saddle point problems, CAM., 313 (2017) 70-81.


XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Izadkhah M M. On the spectral property of local shift-splitting preconditioner for double saddle point problems. J. Math. and Appl.. 2021; 1 (1) :25-34
URL: http://mathapp.ir/article-1-41-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 1, Issue 1 (1-2021) Back to browse issues page
مجله ریاضیات و کاربردها Journal of Mathematics and Applications
Persian site map - English site map - Created in 0.07 seconds with 29 queries by YEKTAWEB 4331