دانشکده علوم ریاضی و کامپیوتر. شماره تماس : 34579600(026) و 77630040(021)
پست الکترونیکی: doostih [AT] khu.ac.ir
حسین دوستی (بازنشسته) توضیحات استاد
Addresses:
1. (Retired) Department of Mathematics, Kharazmi University, 49 Mofateh Ave., Tehran , Iran.
2. (Honorary staff) Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran 14515/1775, Iran.
Phone: +98-21-77507772, +98-26-34579600, +98-21-44865015
Emails: doostih[AT]gmail.com, doostih[AT]khu.ac.ir, doostieh[AT]yahoo.com
Ph.D.: St. Andrews University, Scotland, U.K. (1988).
M.Sc.: Mosahab Institute of Mathematics, Kharazmi University, Tehran, Iran (1975).
B.Sc.: Tabriz University, Iran (1973).
RESPONSIBILITIES
Head of Mathematics Department (Kharazmi University) during the years 1992-1994 and 2002-2004.
RESEARCH INTERESTS
Algebra (particularly: Combinatorial aspects in groups and semigroups)
TEACHING COURSES
B.Sc. courses: Linear algebra, Groups and Rings, Graph theory, Differential equations.
M.Sc. courses: Finite mathematics, Finite groups.
Ph.D. courses: Combinatorial group theory, Linear groups, Combinatorics, Lie Algebras.
PUBLICATIONS
1. RESEARCH ARTICLES
2. BOOKS (In Persian)
3. SUPERVISING (Ph.D. and M.Sc. Students)
[1] C. M. Campbell, H. Doostie and E. F. Robertson, Fibonacci length of generating pairs in groups, In: Application of Fibonacci Numbers 3, 27-35, 1990.
[2] H. Doostie, The interesting classes of finite groups since 1976, Proc. Of 22nd Annual Iranian Mathematics Conference (Unive. of Ferdowsi Mashhad) 122-126, 1991.
[3] H. Doostie, Non-metabelian soluble groups involving the Lucas numbers, J. Sci. Iran 3(1-2), 63-67, 1992.
[4] H. Doostie and A. R. Jamali, A class of deficiency zero soluble groups of derived length 4, Proc. Royal Soc. Edinburgh, 121A, 163-168, 1992.
[5] H. Doostie, On the proof of a conjecture, Proc. of 24th Annual Iranian Mathematics Conference, ( Univ. of Shahid Beheshti), 112-117, 1993.
[6] H. Doostie, Generalized Fibonacci length, Proc. Of 27th Annual Iranians Mathematics Conference, 1996.
[7] H. Doostie, Two classes of one-relator product of semigroups, Proc. of 28th Annual Iranian Mathematics Conference, (Tabriz Univ.), 153-158, 1997.
[8] H. Doostie, An Identitifaction property in semigroups, Proc. of 28th Annual Iranians Mathematics Conference, (Tabriz Univ.), 213-219, 1997.
[9] H. Doostie and M. Hashemi, Two questions on the symmetric properties of semigroups, Proc. of 30th Annual Iranian Mathematics Conference, 1999.
[10] H. Doostie and C. M. Campbell, Fibonacci length of automorphism groups involving the Tribonacci numbers, Vietnam J. of Math. 28, 57-65, 2000.
[11] H. Doostie and R. Golami, Computing on the Fibonacci length of finite groups, Internat. J. Appl. Math. 4(2) , 149-156, 2000.
[12] C.M. Campbell, P.P. Campbell, H. Doostie and E.F. Robertson, On the Fibonacci length of powers of dihedral groups, In: Application of Fibonacci Numbers 9, 69-75, 2000.
[13] H. Doostie , R.Golami and R.M. Thomas, Certain extensions of (l,m,n,k)-groups, Southeast Asian Bull. of Math. 27( 1), 21-34, 2003.
[14] C.M. Campbell, P.P. Campbell, H. Doostie and E.F. Robertson, Fibonacci length for certain metacyclic groups, Algebra Colloquium 11(2), 215-229, 2004.
[15] H. Doostie and M. Maghasedi, Fibonacci length of direct product of groups, Vietnam J. of Math. 33(2), 189-197, 2005.
[16] H. Doostie and M. Maghasedi, On the Fibonacci length of symmetric groups, Internat. Rev. Pure Appl. Math. 1(2), 155-163, 2005.
[17] H. Doostie and M. Hashemi, On the n-permutation property in semigroups and categories, Fareast J. of Mathematical Sciences 19(2), 2005.
[18] H. Doostie and M. Maghasedi, On the group Aut(Sn), Proc. 36th Annual Iranians Mathematics Conference, 2005.
[19] H. Doostie and M. Hashemi, Fibonacci lengths involving the Wall number k(n), J. Appl. Math. and Computing 20(1-2), 171-180, 2006.
[20] H. Doostie and L. Pourfaraj, On the minimal ideals of commuting regular rings and semigroups, Internat. J. of Appl. Mathematics 19(2), 201-216, 2006.
[21] H. Doostie and P.P.Campbell, On the commutator lengths of finitely presented groups, Internat. J. of Mathematics and Mathematical Sciences (IJMMS), Vol. 2006
[22] H. Doostie and A.T. Adnani, Fibonacci length of certain nilpotent 2-groups, Acta Mathematica Sinica 23( 5), 879-884, 2007.
[23] H. Doostie and M. Hashemi, An application of the Fibonacci length, Internat. Mathematical Forum 2(27), ?-?, 2007.
[24] M. Hashemi and H. Doostie, An application of the Fibonacci lengths on graphs, Korean Annals of Math. 24, 49-56, 2007.
[25] H. Doostie and L. Pourfaraj, Finite rings and Loop rings involving the commuting regular elements, Internat. Mathematical Forum 2(52), 2579-2586, 2007.
[26] M. Azadi, H. Doostie and L. Pourfaraj, Certain rings and semigroups examining the regularity property, J. Mathematics, Statistics and Alleid Fields 2(1), 1-6, 2008.
[27] H. Doostie and M. Maghasedi, Certain classes of groups with commutativity degree Ars Combinatoria 89, 263-270, 2008.
[28] A. Sadeghieh and H. Doostie, The n-th roots of elements in finite groups, Mathematical Sciences (Quarterly Journal) 2(4), 347-356, 2008.
[29] K. Ahmadidelir, C.M. Campbell and H. Doostie, Two classes of finite semigroups and monoids involving Lucas numbers, Semigroup Forum 78(2), 200-209, 2009.
[30] H. Doostie and A. Sadeghieh, On the identification of subsemigroups of Transformation semigrous, J. of Mathematical Sciences: Advances& Applications 2(2), 245-256, 2009.
[31] H. Doostie , and K. Ahmadidelir, A class of Z-metacyclic groups involving Lucas numbers, Novi-Sad J. of Math. 39(1), 21-29, 2009.
[32] A. Sadeghieh and H. Doostie, Fibonacci length and the nth-root elements of Hamiltonian groups, Internat. Mathematical Forum 4:39, 1923-1938, 2009.
[33] A. Sadeghieh and H. Doostie, Non-abelian sequenceable groups involving a-covers, J. of Sciences I.R.Iran 20(3), 277-282, 2009.
[34] H. Abdolzadeh, M. Azadi and H. Doostie, A subgroup involvement of Fibonacci length, J. of Appl. Math. And Computings 32, 382-392, 2010.
[35] A. Arjomandfar and H. Doostie, Proving the efficiency of pro-2-groups of fixed coclasses, Bull. Iranian Math. Soc. 37(4), 73-80, 2011.
[36] K. Ahmadidelir, C.M.Campbell and H. Doostie, Almost commutative semigroups, Algebra Colloquium 13(spec. 01), 881-888, 2012.
[37] A. Arjomandfar, C.M. Campbell and H. Doostie, Two classes of finite non-abelian p-sums semigroups, Semigroup Forum 85, 533-539, 2012.
[38] K. Ahmadidelir and H. Doostie, On the automorphisms of direct product of monogenic semigroups and monoids, Turk. J. Math. 36, 95-99, 2012.
[39] Bahram Ahmadi and H. Doostie, Numerical results on finite p-groups of exponent p^2, Internat. J. of Mathematical Modeling & Computations, 2(2), 111-120, 2012.
[40] R. Golami, H. Doostie and and K. Ahmadidelir, Fibonacci length and special automorphisms of finite (l, m | n, k)-groups. TWMS J. Pure Appl. Math. 3(1), 182-189, 2012.
[41] N. Hosseinzadeh and H. Doostie, Presentation of semidirect product of monogenic semigroups, Internat. Math. Forum 8(31), 1531-1537, 2013.
[42] Bahram Ahmadi and H. Doostie, On a class of No-where commutative semigroup rings, Internat. Math. Forum , 8(18), 859-863, 2013.
[43] Bahram Ahmadi and H. Doostie, On the 2-generator p-groups with non-cyclic commutator subgroups, Azerbaijan J. of Math. 4(1), 73-78, 2014.
[44] Bahram Ahmadi, C.M. Campbell and H. Doostie, Non-commutative finite monoids of a given order n>3, An. St. Univ. Ovdius Constanta 22(2), 29-35, 2014.
[45] A. Gharibkhajeh and H. Doostie, A graphical difference between the inverse and regular semigroups, Bull. Iranian Math. Soc. 40(2), 413-421, 2014.
[46] A. Gharibkhajeh and H. Doostie, On the graphs related to Green relations of finite semigroups, Iranian J. Math. Sci. and Informatic 9(1), 42-50, 2014.
[47] M.R. Sorouhesh and H. Doostie, Quasi-commutative semigroups of finite order related to Hamiltonian groups, Bull. Korean Math. Soc. 52(1), 239-246, 2015.
[48] A. Firuzkuhy and H. Doostie, Commuting regularity of finite semigroups, Creative Math. and Informatics 24(1), 43-47, 2015.
[49] B. Panbehkar and H. Doostie, More on the properties of union of two semigroups, Kasmera 43(1), 244-251, 2015.
[50] B. Panbehkar and H. Doostie, Automatic semigroups producing an automaton semigroup, Southeast Asian Bull. of Math. ??, 1-9, 2016.
[51] A.R. Pouhassani, H. Doostie and H. Rasouli, Some elementary combinatorial properties of Aktas soft groups with contributions in soft actions, J. Informatics and Mathematical Sci. 8(3), 189-200, 2016.
[52] A. Firuzkuhy and H. Doostie, Commuting regular graphs for non-commutative semigroups, Communication in Math. and Applications 7(2), 115-119, 2016.
[53] N. Hosseinzadeh and H. Doostie, Examples of non-quasi commutative semigroups decomposed into the union of groups, Bull. Iranian Math. Soc. 42(2), 483-487, 2016.
[54] M.R. Sorouhesh, H. Doostie and C.M. Campbell, A sufficient condition for coinciding the Green graphs of semigroups, J. Math. and Computer Sci. 17, 216-219, 2017.
[55] A. Firuzkuhy and H. Doostie, Semigroups with maximum commuting regularity degree, JP J. of Algebra, Number Theory and Applications 39(1), 77-86, 2017.
[56] M.M. Shamivand, H. Doostie and H. Rasouli, Characterization of (m,n)-high-ideals of posemigroups when they are 0*-minimal, Communication in Math. And Applications 8(1), ??, 2017.
[57] B. Panbehkar and H. Doostie, An automatic semigroup of languages, AAECC 28, 225-235, 2017.
معادلات ديفرانسيل معمولي | ترجمه | انتشارات علوی | 1362 |
مبانی کامپیوتر شیمی | تاليف | دانشگاه پیام نور | 1365 |
جبر بروش تمرین جلد 1-2-3 | ترجمه | انتشارات مبتکران | 1371 |
مبانی ریاضی | تاليف | انتشارات دانشگاه خوارزمی | 1375 |
مبانی و کاربرد کامپیوتر در شیمی | تاليف | انتشارات مبتکران | 1376 |
مبانی ریاضی به روش تمرین | تاليف | انتشارات مبتکران | 1376 |
جبر دانشگاهی | تاليف | انتشارات مبتکران | 1379 |
نظریه ی گراف و کاربردهای آن | تاليف | انتشارات مبتکران | 1384 |
جبر بروش تمرین جلد 4-5-6 | ترجمه | انتشارات مبتکران | 1384 |
مقدمه ای بر معادلات دیفرانسیل | تاليف | انتشارات روشنگران | 1386 |
3.1. Ph.D. Thesis
3.2. M.Sc. Dissertations